首页> 外文OA文献 >On Acyclic Edge-Coloring of Complete Bipartite Graphs
【2h】

On Acyclic Edge-Coloring of Complete Bipartite Graphs

机译:关于完全二部图的非循环边染色

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An acyclic edge-coloring of a graph is a proper edge-coloring withoutbichromatic ($2$-colored) cycles. The acyclic chromatic index of a graph $G$,denoted by $a'(G)$, is the least integer $k$ such that $G$ admits an acyclicedge-coloring using $k$ colors. Let $\Delta = \Delta(G)$ denote the maximumdegree of a vertex in a graph $G$. A complete bipartite graph with $n$ verticeson each side is denoted by $K_{n,n}$. Basavaraju, Chandran and Kummini provedthat $a'(K_{n,n}) \ge n+2 = \Delta + 2$ when $n$ is odd. Basavaraju andChandran provided an acyclic edge-coloring of $K_{p,p}$ using $p+2$ colors andthus establishing $a'(K_{p,p}) = p+2 = \Delta + 2$ when $p$ is an odd prime.The main tool in their approach is perfect $1$-factorization of $K_{p,p}$.Recently, following their approach, Venkateswarlu and Sarkar have shown that$K_{2p-1,2p-1}$ admits an acyclic edge-coloring using $2p+1$ colors whichimplies that $a'(K_{2p-1,2p-1}) = 2p+1 = \Delta + 2$, where $p$ is an oddprime. In this paper, we generalize this approach and present a generalframework to possibly get an acyclic edge-coloring of $K_{n,n}$ which possess aperfect $1$-factorization using $n+2 = \Delta+2$ colors. In this generalframework, we show that $K_{p^2,p^2}$ admits an acyclic edge-coloring using$p^2+2$ colors and thus establishing $a'(K_{p^2,p^2}) = p^2+2 = \Delta + 2$when $p\ge 5$ is an odd prime.
机译:图的无环边缘着色是没有双色($ 2 $色)循环的适当边缘着色。图$ G $的非循环色度指数由$ a'(G)$表示,是最小整数$ k $,因此$ G $允许使用$ k $种颜色进行非循环边缘着色。令$ \ Delta = \ Delta(G)$表示图形$ G $中顶点的最大程度。每边有$ n $个顶点的完整二部图用$ K_ {n,n} $表示。 Basavaraju,Chandran和Kummini证明当$ n $为奇数时,$ a'(K_ {n,n})\ ge n + 2 = \ Delta + 2 $。 Basavaraju和Chandran使用$ p + 2 $颜色提供了$ K_ {p,p} $的非循环边缘着色,从而在$ p时建立了$ a'(K_ {p,p})= p + 2 = \ Delta + 2 $ $是一个奇数素数。他们的方法中的主要工具是将$ K_ {p,p} $进行完美的$ 1 $分解。最近,在执行他们的方法后,Venkateswarlu和Sarkar已证明$ K_ {2p-1,2p-1 } $允许使用$ 2p + 1 $种颜色进行非循环边缘着色,这意味着$ a'(K_ {2p-1,2p-1})= 2p + 1 = \ Delta + 2 $,其中$ p $是奇质数。在本文中,我们对该方法进行了概括,并提出了一个通用框架,以可能获得$ K_ {n,n} $的非循环边缘着色,使用$ n + 2 = \ Delta + 2 $颜色具有完美的$ 1 $分解。在此一般框架中,我们表明$ K_ {p ^ 2,p ^ 2} $允许使用$ p ^ 2 + 2 $颜色进行非循环边缘着色,从而建立$ a'(K_ {p ^ 2,p ^ 2 })= p ^ 2 + 2 = \ Delta + 2 $(当$ p \ ge 5 $是奇数素数时)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号